Department of PHYSICS

Oovt. Degree College, Rajampeta
NAAC re-acridited at B+ Level
Academic year: 2023 -24

1. Name of the Activity	PHYSICS ONLINE QUIZ -IV ON ACCOUNT OF WORLD STUDENTS DAY
2. Name of the Lecturer	Sri. N. B. SIVARAMIREDDY
3. Date	15-10-2023
4. Number of students participated	54
5. Number of faculty involved	01

6. Aim & Objectives:

- To know the knowledge of the students about subject
- To Motivate the students towards Physics Subject
- To enhance the thinking power of students

7.Brief Report:

Dept. Of PHYSICS was conducted a Online Quiz on 'Physics and its applications' on the occasion of "WORLD STUDENTS DAY" on 15th October 2024 **to Under Graduate Students of B.Sc. and B.Tech.**

Timestamp	Email Address	Score	FULL NAME :	Qualification	Institution Name	1 Which principle involve	2 Which force Acting in F	3. Observe the below fig	4 Which Force is minimi	5 Which principle involv	e 6. Below transformer use
	0 dineshamadakayala@gr				GDC Rajampet	Reflection	Centripetal force	Option 3	IMPULSIVE FORCE	Mutual induction	X-RAY Machine
	2 nbvijayeswar@gmail.con			Ва	Braou	Total Internal Reflection		All the above		Mutual induction	X-RAY Machine
	4 iktasollork2000@gmail.cc				Braou	Total Internal Reflection	Both	All the above	FRICTIONAL FORCE	Mutual induction	All the above
	3 Irmrmphil@gmail.com		Dr.L.Raja Mohan Reddy		Government Degree Coll		Centripetal force	All the above	FRICTIONAL FORCE	Mutual induction	All the above
	7 nbpranaveswarreddy@gr			Nothin	Internet	Total Internal Reflection	Both	All the above	IMPULSIVE FORCE	Mutual induction	All the above
	8 surendrakesarapu937@c			Degree	Govt degree college raja		Centripetal force	Option 2	CENTRIPETAL FORCE		In Microwave oven
	1 bathalapalimohan@73gn				Nbkr	Total Internal Reflection	Both	Option 1	FRICTIONAL FORCE	Mutual induction	For Transmission At Pov
	3 kiran342649@gmail.com		·		N.B.K.R INSTITUTE OF			All the above	IMPULSIVE FORCE	Mutual induction	All the above
			Dr. B. Radhakrishna	Ph. D.	NBKRIST	Total Internal Reflection	J	All the above	IMPULSIVE FORCE	Mutual induction	All the above
	5 vishnuvendoti@gmail.cor			BTech	NBKRIST	Total Internal Reflection		All the above	FRICTIONAL FORCE	Mutual induction	All the above
	8 sivaram7139@gmail.com			Btech	Narayana	Refraction	Both	All the above	CENTRIPETAL FORCE		All the above
	5 thohidshaik81@gmail.com			Btech mechanical	Nbkrist	Total Internal Reflection		All the above	IMPULSIVE FORCE	Self induction	All the above
	1 20kb1a03b9@nbkrist.org			Btech mechanical engine		Reflection	Centripetal force	Option 1	IMPULSIVE FORCE	Mutual induction	For Transmission At Pov
	0 vandanadaggolu@gmail.				N. B. K. R. I. S. T. (Vidya		Centrifugal force	Option 2	IMPULSIVE FORCE	Mutual induction	For Transmission At Pov
	7 tungavishnvardhanreddy			- ,	NBKRIST	Total Internal Reflection		Option 3	FRICTIONAL FORCE	Mutual induction	X-RAY Machine
	9 lovelysri959@gmail.com				Nbkr	Total Internal Reflection			CENTRIFUGAL FORCE		All the above
	6 bhanukandulak@gmail.c			Btech	NBKR institute of science		Centripetal force	All the above	IMPULSIVE FORCE	Mutual induction	All the above
	0 yaswanthupputuri112@g			Btech	Nbkrist	Interference	None	Option 1	CENTRIPETAL FORCE		All the above
	1 budamaguntajathin@gma			Under Graduate	NBKR Institute of Science			All the above	IMPULSIVE FORCE	Mutual induction	All the above
	9 niranjangurram97@gmai		-	Btech	Nbkr institute of science		Centrifugal force	All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	9 parameswarichalla2002@			Btech	NBKR institute of science		J	Option 2	IMPULSIVE FORCE	Mutual induction	All the above
	1 rajkumarjammalla@gmai			Undergraduate	NBKRIST	Total Internal Reflection		•	CENTRIPETAL FORCE		All the above
	6 gowthami9573@gmail.cc			B.Tech	NBKRIST	Total Internal Reflection		All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	5 daravenu431@gmail.con				NBKRIST				CENTRIFUGAL FORCE		All the above
				B-tech BTECH	NBKRIST	Total Internal Reflection			IMPULSIVE FORCE		All the above
	3 kalikirichandu17@gmail.			II-BTech	NBKR Institute Of Science	Total Internal Reflection	Centripetal force Centrifugal force	All the above	IMPULSIVE FORCE	Mutual induction Mutual induction	All the above
	ponaganiyagnasri@gmairevanth4755@gmail.com		0 0	BTech final year	NBKRIST	Total Internal Reflection	- 5	Option 1	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
								•		Mutual induction	All the above
	9 pardhavi2003@gmail.cor				N.B.K.R INSTITUTE OF		Centrifugal force	All the above	IMPULSIVE FORCE		
			Dharmaiahgari venkat cl		NBKR institute of science		Both	Option 2	IMPULSIVE FORCE	Mutual induction	All the above
	7 naniprasad.4321@gmail.			B.Tech	NBKR Institute of Scienc		Centripetal force	Option 3		Mutual induction	All the above
	2 yacsy143@gmail.com		YANAMALA CHANDRA		NBKRIST	Interference	Both	All the above	IMPULSIVE FORCE	Self capacitance	All the above
	5 sulthanshaik191@gmail.			BTech	NBKRIST	Total Internal Reflection	- 5	All the above	IMPULSIVE FORCE	Mutual induction	All the above
	6 munikumar8555@gmail.c			Btech	N.B.K.R institute of scien				IMPULSIVE FORCE	Mutual induction	All the above
	5 vasudhajeeva@gmail.co				N.B.K.R INSTITUTE OF			Option 2	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	8 Kannashanmukharamki1				NBKR INSTITUTE OF S		Centrifugal force	All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	D Phaniaditya103@gmail.c		•	Btech	NBKRIST	Total Internal Reflection		All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	5 cheelasaniruchitha@gma			3rd-B.tech-Ece	N.B.K.R.I.S.T.	Total Internal Reflection	. 3	All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	2 kasulamanohar2003@gn			Degree	SCNR GOVERNMENT D		Both		CENTRIPETAL FORCE		For Transmission At Pov
	6 20kb1a0417@nbkrist.org			Btech final year	NBKR institute of science		·	Option 3	IMPULSIVE FORCE	Mutual induction	All the above
	4 nasimoonshamshad@gn				Scnr government degree			Option 1	IMPULSIVE FORCE	Self capacitance	For Transmission At Pow
	3 sreelathaboggula2005@				Y.v University	Total Internal Reflection		All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
			N.Ramya sri		A1 global engineering clo			· ·	CENTRIFUGAL FORCE		In Microwave oven
	1 kannabhavyasree@gmai							All the above	IMPULSIVE FORCE	Mutual induction	X-RAY Machine
	9 sudeepareddy295@gma							All the above	IMPULSIVE FORCE	Mutual induction	X-RAY Machine
	4 veeraanajaneyulu@gmai				Governmentovt Degree (Both	All the above	IMPULSIVE FORCE	Mutual induction	All the above
	5 pillisudheer570@gmail.co			Degree 3rd year	Government degree colle		None	All the above	FRICTIONAL FORCE	Mutual induction	For Transmission At Pow
	5 Chinnaobulesu15007@g				Government college for r		Centripetal force	All the above	IMPULSIVE FORCE	Mutual induction	For Transmission At Pow
	4 ramgangireddyyerranagu			,	Government College For		Centripetal force	Option 3	IMPULSIVE FORCE	Self induction	In Microwave oven
	0 munisankarsantha@gma				SIDDHARTH INSTITUTE		Centripetal force	All the above	IMPULSIVE FORCE	Mutual induction	All the above
	7 callmesms123@gmail.co			B.SC	PINGLE GOVT DEGREE			All the above	IMPULSIVE FORCE	Mutual induction	In Microwave oven
	4 www.munisankar@gmail			B.TECH	SIDDARTHA INSTITUTE			All the above	IMPULSIVE FORCE	Mutual induction	X-RAY Machine
	5 specialchill43@gmail.cor			,	CENTRAL UNIVERSITY	Total Internal Reflection	Centripetal force	All the above	IMPULSIVE FORCE	Mutual induction	In Microwave oven
	8 subhansreedevi@gmail.c				Govt. Degree college, my		Centripetal force	All the above	FRICTIONAL FORCE	Mutual induction	All the above
		00 / 400	PEDDA NARASIMHUDI	IMCC	GOVT DEGREE COLLE	Interference	Centripetal force	All the above	FRICTIONAL FORCE	Self capacitance	In Microwave oven

7 Which principle inve	volve 8. Which Law of conserv; 9. Which Law of conserv; 10. An Athlete runs be	for 11. Below figure Skate	r is 12. Below figure represe	er 13. Below figure repres	er 14.Below figure represe	n 15. Below figure represe	er 16. Below figure represe	er 17. Below figure repres
Refraction	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	Electromagnetic inducti		Electrical Oscillator	Piezoelectric Effect	Magnetostriction Effect	Photo Electric Effect
Dispersion	Law of conservation of at Inertia of Motion	Inertia of Motion	All the above	Newton's third law	Electrical Oscillator	Piezoelectric Effect	Magnetostriction Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of ar Law of conservation of ar Frictional force	Inertia of Motion	Electric Current due to	/a Newton's second law	LC Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of m Law of conservation of lir Frictional force	Inertia of Motion	Electric Current due to	/a Newton's second law	LC Circuit	Magnetostriction Effect	Piezoelectric Effect	None of the above
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	All the above	Newton's third law	All the above	Piezoelectric Effect	Magnetostriction Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Motion	Electric Current due to	/a Newton's third law	Tank Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Reflection	Law of conservation of er Law of conservation of lir Inertia of Motion	Inertia of Direction	All the above	Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of ar Law of conservation of er Inertia of Rest	Inertia of Motion	Electric Current due to	/a Newton's second law	All the above	Electromagnetic Effect	Piezoelectric Effect	Photo Voltoic effect
Refraction	Law of conservation of lir Law of conservation of lir Frictional force	Inertia of Rest	All the above	Newton's third law	All the above	Electromagnetic Effect	Magnetostriction Effect	Photo Electric Effect
Dispersion	Law of conservation of er Law of conservation of ar Inertia of Rest	Inertia of Rest		Newton's first law	Electrical Oscillator	Electromagnetic Effect	Piezoelectric Effect	Photo Voltage effect
Dispersion	Law of conservation of lir Law of conservation of m Inertia of Motion	Inertia of Rest	Electromagnetic inducti	oi Newton's second law	LC Circuit	Piezoelectric Effect	Electromagnetic Effect	Photo Electric Effect
Reflection	Law of conservation of ar Law of conservation of m Frictional force	Inertia of Motion	Electric Current due to	vanone of the above	LC Circuit	Magnetostriction Effect	Electromagnetic Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Frictional force	Inertia of Rest	All the above	Newton's third law	All the above	Piezoelectric Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Motion	Electromagnetic inducti	or none of the above	Electrical Oscillator	Electromagnetic Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of er Law of conservation of ar Inertia of Motion	none of the above	Electromagnetic inducti	oi Newton's first law	All the above	Piezoelectric Effect	Electromagnetic Effect	Photo Voltage effect
Refraction	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Motion	Electromagnetic inducti	Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Motion	Lenz's law	Newton's first law	LC Circuit	Piezoelectric Effect	Magnetostriction Effect	Photo Voltage effect
Refraction	Law of conservation of m Law of conservation of er Inertia of Motion	Inertia of Direction	Electromagnetic inducti	oi Newton's second law	LC Circuit	Piezoelectric Effect	Magnetostriction Effect	Photo Voltoic effect
Dispersion	Law of conservation of ar Law of conservation of lir Inertia of Motion	Inertia of Rest	Electromagnetic inducti	or Newton's third law	Electrical Oscillator	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	Electric Current due to	/a Newton's first law	All the above	Piezoelectric Effect	Piezoelectric Effect	Photo Voltoic effect
Refraction	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	All the above	none of the above	All the above	Piezoelectric Effect	Electromagnetic Effect	Photo Voltoic effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	All the above	Newton's first law	All the above	Piezoelectric Effect	Electromagnetic Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Frictional force	Inertia of Direction	All the above	Newton's first law	Electrical Oscillator	Piezoelectric Effect	Piezoelectric Effect	None of the above
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	Electromagnetic inducti	or Newton's third law	LC Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	Electromagnetic inducti	or Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of ar Law of conservation of m Inertia of Motion	Inertia of Motion	Lenz's law	Newton's first law	LC Circuit	Piezoelectric Effect	Electromagnetic Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	Electromagnetic inducti	or Newton's third law	Tank Circuit	Magnetostriction Effect	Electromagnetic Effect	Photo Electric Effect
Interference	Law of conservation of ar Law of conservation of lir Inertia of Rest	Inertia of Rest	Electric Current due to	/a Newton's third law	All the above	Electromagnetic Effect	Piezoelectric Effect	Photo Voltoic effect
Refraction	Law of conservation of er Law of conservation of ar Inertia of Motion	Inertia of Motion	Electric Current due to	/a Newton's first law	All the above	Piezoelectric Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Rest	All the above	Newton's third law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	Lenz's law	Newton's second law	LC Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	LC Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Voltoic effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	LC Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of angular momentum	Inertia of Rest	Lenz's law	Newton's second law	Electrical Oscillator	Piezoelectric Effect	Magnetostriction Effect	Photo Voltoic effect
Interference	Law of conservation of er Law of conservation of er None of the above	none of the above	Electromagnetic inducti	oi Newton's first law	LC Circuit	Electromagnetic Effect	Piezoelectric Effect	Photo Voltage effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Motion	All the above	Newton's first law	All the above	Magnetostriction Effect	Electromagnetic Effect	Photo Electric Effect
Dispersion	Law of conservation of m Law of conservation of lir Inertia of Rest	Inertia of Motion	Electromagnetic inducti	o Newton's third law	LC Circuit	Electromagnetic Effect	Piezoelectric Effect	
Refraction	Law of conservation of lir Law of conservation of lir Inertia of Motion	none of the above	All the above	Newton's third law	All the above	None of the above	Magnetostriction Effect	Photo Voltage effect
Dispersion	Law of conservation of ar Law of conservation of ar None of the above	Inertia of Motion	Electric Current due to	/a Newton's second law	All the above	Magnetostriction Effect	Electromagnetic Effect	Photo Voltage effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	Tank Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	All the above	Newton's third law	Tank Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Refraction	Law of conservation of lir Law of conservation of an Inertia of Motion	none of the above	All the above	none of the above	All the above	None of the above	Magnetostriction Effect	Photo Voltage effect
Reflection	Law of conservation of lir Law of conservation of m None of the above	none of the above	Electromagnetic inducti	oi Newton's first law	LC Circuit	Electromagnetic Effect	Electromagnetic Effect	Photo Electric Effect
Refraction	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Rest	All the above	Newton's second law	All the above	Electromagnetic Effect	Magnetostriction Effect	Photo Electric Effect
Refraction	Law of conservation of lir Law of conservation of en Inertia of Motion	Inertia of Motion	All the above	Newton's first law	All the above	Piezoelectric Effect	Magnetostriction Effect	Photo Voltoic effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion		none of the above	Electrical Oscillator	Electromagnetic Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	Electric Current due to	/a Newton's second law	Tank Circuit	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of an Inertia of Motion	Inertia of Motion	Lenz's law	Newton's first law	All the above	Electromagnetic Effect	Piezoelectric Effect	Photo Electric Effect
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Motion	Lenz's law	Newton's first law	All the above	Magnetostriction Effect	Piezoelectric Effect	Photo Electric Effect
					A II 41 1		A4	DI 1 EL 11 EE 1
Dispersion	Law of conservation of lir Law of conservation of ar Inertia of Motion	Inertia of Rest	All the above	Newton's third law	All the above	None of the above	Magnetostriction Effect	Photo Electric Effect

10. Dolow figure represen	10. Bolow transformer us	20. Polou fauro roprocos 24. Polou fauro ubieb es 22. Polou fauro ubieb e	22 PELOW FIGURE BE	24 PELOW FIGURE RE 25 PELOW FIGURE MANUS FELDOWN DUE TO	
			INERTIA OF MOTION	24. BELOW FIGURE RE 25. BELOW FIGURE MAN IS FELDOWN DUE TO	
MECHANICAL ROTAR MECHANICAL ROTAR	-	CONSERVATION OF INE His body act as a load re Option 3 CONSERVATION OF INE His body act as a load re All the above	BOTH ARE ABOVE	CONSERVATION OF AN BOTH ARE CORRECT	
		,			
	In Microwave oven	CONSERVATION OF MC All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
		CONSERVATION OF MC All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF AN ERICTION DECREASES	
	In Microwave oven	CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
	In Microwave oven	CONSERVATION OF VE Potential difference exist Option 1	INERTIA OF REST	CONSERVATION OF MC BOTH ARE WRONG	
	In Microwave oven	CONSERVATION OF MA Due to above option he n Option 2	BOTH ARE ABOVE	FRICTION DECREASES	
		CONSERVATION OF MC Due to above option he may get affected electric s		CONSERVATION OF AN FRICTION DECREASES	
ELECTRIC DYNAMO	None of the above	CONSERVATION OF VE His body act as a load re Option 1	INERTIA OF MOTION	CONSERVATION OF AN FRICTION DECREASES	
MECHANICAL ROTAR	For Transmission At Pow	CONSERVATION OF MA All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF AN BOTH ARE CORRECT	
MECHANICAL ROTAR	In Microwave oven	CONSERVATION OF MC Potential difference exist All the above	INERTIA OF MOTION	CONSERVATION OF LIN BOTH ARE CORRECT	
ELECTRIC DYNAMO	In Welding machine	CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF LIN FRICTION INCREASES	
ELECTRIC DYNAMO	In Microwave oven	CONSERVATION OF VE Potential difference exist All the above	INERTIA OF REST	CONSERVATION OF MC FRICTION INCREASES	
MECHANICAL ROTAR	For Transmission At Pow	CONSERVATION OF MC Due to above option he n Option 2	INERTIA OF MOTION	CONSERVATION OF AN FRICTION INCREASES	
ELECTRIC MOTAR	In Microwave oven	CONSERVATION OF VE Due to above option he n Option 3	INERTIA OF MOTION	CONSERVATION OF MC FRICTION INCREASES	
ELECTRIC DYNAMO	In Microwave oven	CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
None of the above	For Transmission At Pow	CONSERVATION OF MCAll the above are correct Option 2	BOTH ARE ABOVE	CONSERVATION OF MC FRICTION DECREASES	
MECHANICAL ROTAR	In Microwave oven	CONSERVATION OF VE His body act as a load re Option 2	INERTIA OF MOTION	CONSERVATION OF LIN BOTH ARE WRONG	
	In Welding machine	CONSERVATION OF MC All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION INCREASES	
ELECTRIC MOTAR	-	CONSERVATION OF MC Potential difference exist All the above	INERTIA OF MOTION	CONSERVATION OF AN FRICTION DECREASES	
ELECTRIC MOTAR		CONSERVATION OF VE All the above are correct Option 2	BOTH ARE ABOVE	CONSERVATION OF EN FRICTION INCREASES	
MECHANICAL ROTAR		CONSERVATION OF VE Potential difference exist Option 1	INERTIA OF REST	CONSERVATION OF LIN FRICTION DECREASES	
MECHANICAL ROTAR		CONSERVATION OF MA All the above are correct All the above		CONSERVATION OF AN FRICTION INCREASES	
		CONSERVATION OF INF Due to above option he n Option 3	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
MECHANICAL ROTAR		CONSERVATION OF VE All the above are correct All the above		CONSERVATION OF LIN BOTH ARE CORRECT	
	In Welding machine	CONSERVATION OF MA All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION INCREASES	
ELECTRIC DYNAMO	In Welding machine	CONSERVATION OF MC Due to above option he n Option 3	INERTIA OF MOTION	CONSERVATION OF AN FRICTION DECREASES	
	In Welding machine	CONSERVATION OF MC His body act as a load re All the above	INERTIA OF MOTION	CONSERVATION OF AN FRICTION DECREASES	
	None of the above	CONSERVATION OF INE All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF ANY RICTION DECREASES CONSERVATION OF LIN FRICTION DECREASES	
	In Microwave oven	CONSERVATION OF MA All the above are correct Option 1	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
	In Microwave oven	CONSERVATION OF INE All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF ANY RICTION DECREASES CONSERVATION OF EN BOTH ARE WRONG	
		CONSERVATION OF MC All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF AN ERICTION DECREASES	
	In Welding machine	CONSERVATION OF MC Potential difference exist All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
		CONSERVATION OF MCHis body act as a load re Option 2		CONSERVATION OF AN FRICTION DECREASES	
		CONSERVATION OF VE Potential difference exist All the above	INERTIA OF REST	CONSERVATION OF AN FRICTION INCREASES	
	In Welding machine	CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
MECHANICAL ROTAR		CONSERVATION OF MC All the above are correct All the above	INERTIA OF MOTION	CONSERVATION OF AN FRICTION DECREASES	
		CONSERVATION OF MA Potential difference exist Option 2	INERTIA OF MOTION	CONSERVATION OF LIN FRICTION DECREASES	
		CONSERVATION OF MC All the above are correct. All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION INCREASES	
	In Welding machine	CONSERVATION OF MA Due to above option he may get affected electric s			
	For Transmission At Pow	CONSERVATION OF MA All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF LIN BOTH ARE WRONG	
None of the above		CONSERVATION OF MA Potential difference exist Option 1	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
	In Welding machine	CONSERVATION OF INE All the above are correct All the above	INERTIA OF REST	CONSERVATION OF AN FRICTION DECREASES	
ELECTRIC DYNAMO	In Welding machine	CONSERVATION OF INE All the above are correct All the above	INERTIA OF REST	CONSERVATION OF AN FRICTION DECREASES	
None of the above	None of the above	CONSERVATION OF VE Potential difference exist Option 3	BOTH ARE ABOVE	CONSERVATION OF LIN BOTH ARE WRONG	
ELECTRIC DYNAMO	For Transmission At Pow	CONSERVATION OF VE Potential difference exist All the above	INERTIA OF REST	CONSERVATION OF AN BOTH ARE WRONG	
MECHANICAL ROTAR	For Transmission At Pow	CONSERVATION OF MA All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF AN BOTH ARE CORRECT	
ELECTRIC MOTAR	For Transmission At Pow	CONSERVATION OF MA Potential difference exist Option 2		CONSERVATION OF AN FRICTION DECREASES	
ELECTRIC DYNAMO	For Transmission At Pow	CONSERVATION OF INE Potential difference exist Option 3	INERTIA OF MOTION	CONSERVATION OF MC FRICTION INCREASES	
ELECTRIC DYNAMO	In Welding machine	CONSERVATION OF MCHis body act as a load re All the above	BOTH ARE ABOVE	CONSERVATION OF MC FRICTION DECREASES	
ELECTRIC DYNAMO	In Welding machine	CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF EN FRICTION DECREASES	
ELECTRIC DYNAMO	In Welding machine	CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF EN FRICTION DECREASES	
		CONSERVATION OF MC All the above are correct All the above	BOTH ARE ABOVE	CONSERVATION OF AN FRICTION DECREASES	
MECHANICAL ROTAR		CONSERVATION OF MC Due to above option he n All the above		CONSERVATION OF EN FRICTION INCREASES	

* Indicates required question

Online Quiz on 'Physics and its applications' on the occasion of "WORLD STUDENTS DAY" on 15th October. by Department of Physics, GOVT.DEGREE COLLEGE, RAJAMPETA,KADAPA(Dist.)-516115.

Online Quiz on 'Physics and its applications' on the occasion of " WORLD STUDENTS DAY" on 15th October. by Department of Physics, GOVT.DEGREE COLLEGE, RAJAMPETA,KADAPA(Dist.)-516115.

1.	Email *	
2.	FULL NAME: *	
۷.	TOLL IV WIL.	
3.	Qualification *	
4.	Institution Name *	
5.	Which principle involved in endoscopy	
	Mark only one oval.	
	Reflection	
	Refraction	
	Total Internal Reflection	
	Interference	

6. 2. Which force Acting in Hammer through By the Athlet.

Mark only one oval.

- Centrifugal force
- Centripetal force
- O Both
- None

3. Observe the below figures and Which one is represent Coriolis force
 Mark only one oval.

4 points

Option 1

Option 2

Option 3

All the above

8. 4. Which Force is minimized by using Shock Absorbers in Vehicles?

4 points

- FRICTIONAL FORCE
- CENTRIFUGAL FORCE
- CENTRIPETAL FORCE
- MPULSIVE FORCE

23, 2:5	9 PM Online Quiz on 'Physics and its applications' on the occasion of " WORLD STUDENTS	DAY" on 15th October. by Departme
9.	5. Which principle involved in Transformer functioning	4 points
	Mark only one oval.	
	Self induction	
	Self capacitance	
	Mutual induction	
	Mutual capacitance	
10.	6. Below transformer used in	4 points
	Step up transformer	
	10 V a.c. 20 V a.c.	
	Gif by @emc2andallthat	
	Mark only one oval.	
	For Transmission At Power stations	
	In Microwave oven	
	X-RAY Machine	
	All the above	
11.	7 Which principle involved in rainbow formation	4 points
	Mark only one oval.	
	Dispersion	
	Reflection	
	Refraction	
	Interference	
12.	Which Law of conservation involved in Rocket propulsion	4 points
	Mark only one oval.	
	Law of conservation of linear momentum	
	Law of conservation of angular momentum	
	Law of conservation of energy	
	Law of conservation of mass	

points

Mark only one oval.

	Law	of	conservation	of	linear	momentum
--	-----	----	--------------	----	--------	----------

- Law of conservation of angular momentum
- Law of conservation of energy
 - ____ Law of conservation of mass
 - Other:

14. 10. An Athlete runs before LONG JUMP to get advantage on

Mark only one oval.

- Inertia of Motion
 - ____ Frictional force
- Inertia of Rest
- None of the above

15. 11. Below figure Skater is fell down due to-----

4 points

Mark only one oval.

- Inertia of Rest
- ___ Inertia of Motion
- Inertia of Direction
- none of the above

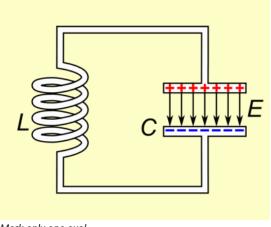
Mark only one oval.

()	I۸	nz	<u>'</u> د	laν

- Electric Current due to variable magnetic field
- Electromagnetic induction
- All the above

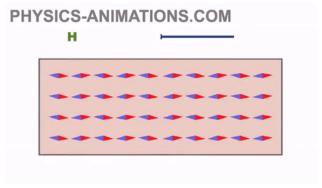
17. 13. Below figure represent -----

4 points



Mark only one oval.

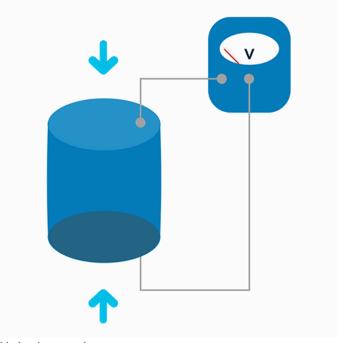
- Newton's first law
- Newton's second law
- Newton's third law
- none of the above


18. 14.Below figure represent -----

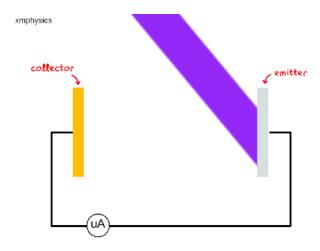
4 points

- Tank Circuit
- ____ LC Circuit
- Electrical Oscillator
- All the above

19. 15. Below figure represent -----



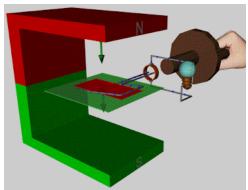
Mark only one oval.


- Electromagnetic Effect
- Piezoelectric Effect
- Magnetostriction Effect
- One of the above

20. 16. Below figure represent -----

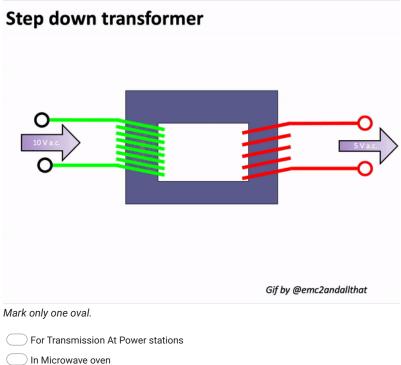
4 points

- Magnetostriction Effect
- Piezoelectric Effect
- Electromagnetic Effect
- None of the above



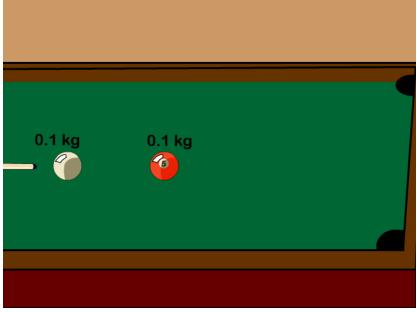
Mark only one oval.

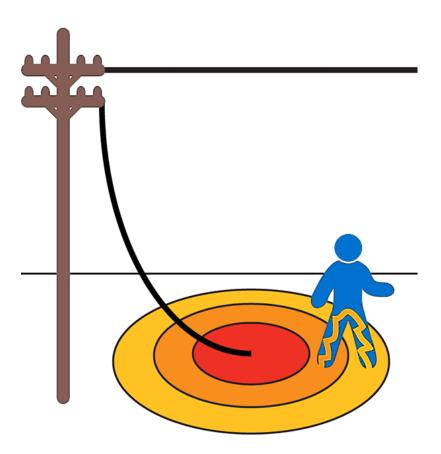
- Photo Electric Effect
- Photo Voltage effect
- Photo Voltoic effect
- None of the above
- Other:


22. 18. Below figure represent -----

4 points

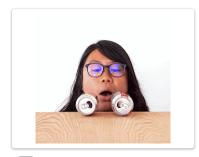
Mark only one oval.


- ___ ELECTRIC DYNAMO
- ELECTRIC MOTAR
- MECHANICAL ROTAR
- None of the above


- In Welding machine
- None of the above

20. Below figure represent -----

4 points


- CONSERVATION OF MASS
- CONSERVATION OF VELOCITY
- CONSERVATION OF INERTIA
- CONSERVATION OF MOMENTUM

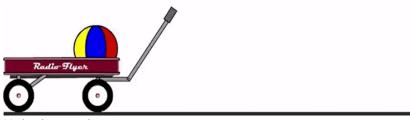
- Potential difference exist between his two legs
- Due to above option he may get affected electric shock
- His body act as a load resistor
- All the above are correct

4 points

Mark only one oval.

Option 1

Option 2



Option 3

All the above

27. 23. BELOW FIGURE REPRESENT -----

4 points

- INERTIA OF REST
- ☐ INERTIA OF MOTION
- BOTH ARE ABOVE
- NONE OF THE ABOVE

4 points

Mark only one oval.

CONSERVA	ATION OITA	ANGUL	AR MOI	MENTUM
CONTOLICAT		, (1 4 C C L)		*1L1 * 1 C1*1

- CONSERVATION OF MOTION
- CONSERVATION OF LINEAR MOMENTUM
- CONSERVATION OF ENERGY

29.	25. BELOV	V FIGURE	MAN IS	FELDOW	N DUE TO)
-----	-----------	----------	--------	--------	----------	---

4 points

Mark only one oval.

- FRICTION DECREASES
- FRICTION INCREASES
- BOTH ARE WRONG
- BOTH ARE CORRECT

This content is neither created nor endorsed by Google.

Google Forms