CBCS / Semester System (w.e.f. 2020-'21 Admitted Batch)

I Semester /Botany Core Course - 1

Fundamentals of Microbes and Non-vascular Plants

(Viruses, Bacteria, Fungi, Lichens, Algae and Bryophytes)

(Total hours of teaching – 60 @ 04 Hrs./Week)

Theory:

Learning Outcomes:

On successful completion of this course, the students will be able to:

- > Explain origin of life on the earth.
- ➤ Illustrate diversity among the viruses and prokaryotic organisms and can categorize them.
- Classify fungi, lichens, algaeand bryophytes based on theirstructure, reproduction and life cycles.
- Analyze and ascertain the plant disease symptoms due to viruses, bacteria and fungi.
- ➤ Recall and explain the evolutionary trends among amphibians of plant kingdom for their shift to land habitat.
- Evaluate the ecological and economic value of microbes, thallophytes and bryophytes.

Unit – 1:Origin of life and Viruses

12Hrs.

- 1. Origin of life, concept of primary Abiogenesis; Miller and Urey experiment. Five kingdom classification of R.H. Whittaker
- 2. Discovery of microorganisms, Pasteur experiments, germ theory of diseases.
- 3. Shape and symmetry of viruses; structure of TMV and Gemini virus; multiplication of TMV; A brief account of Prions and Viroids.
- 4. A general account on symptoms of plant diseases caused by Viruses.
- 5. Significance of viruses in vaccine production, bio-pesticides and as cloning vectors.

Unit – 2:Special groups of Bacteria and Eubacteria

12Hrs.

- 1. Brief account of Archaebacteria, ActinomycetesandCyanobacteria.
- 2. Cell structure of Eubacteria.

- 3. Reproduction- Asexual (Binary fission and endospores) and bacterial recombination (Conjugation, Transformation, Transduction).
- 4. Economic importance of Bacteria with reference to their role in Agriculture and industry (fermentation and medicine).
- 5. A general account on symptoms of plant diseases caused by Bacteria; Citrus canker.

Unit – 3: Fungi & Lichens

12 Hrs.

- 1. General characteristics of fungi and Ainsworth classification (upto classes).
- 2. Structure, reproductionand life history of(a) *Rhizopus* (Zygomycota) and (b) *Puccinia* (Basidiomycota).
- 3. Economic uses of fungi in food industry, pharmacy and agriculture.
- 4. A general account on symptoms of plant diseases caused by Fungi; Blast of Rice.
- 5. Lichens- structure and reproduction; ecological and economic importance.

Unit – 4: Algae

12 Hrs.

- 1. General characteristics of Algae (pigments, flagella and reserve food material); Fritsch classification (upto classes).
- 2. Thallus organization in Algae.
- 3. Occurrence, structure, reproduction and life cycle of (a) *Spirogyra* (Chlorophyceae) and (b) *Polysiphonia* (Rhodophyceae).
- 4. Economic importance of Algae.

Unit – 5:Bryophytes

12 Hrs.

- 1. General characteristics of Bryophytes; classification upto classes.
- Occurrence, morphology, anatomy, reproduction (developmental details are not needed) and life cycle of (a) *Marchantia* (Hepaticopsida) and (b) *Funaria*(Bryopsida).
- 3. General account on evolution of sporophytes in Bryophyta.

Text books:

- ➤ Botany I (Vrukshasastram-I) : Telugu Akademi, Hyderabad
- ➤ Pandey, B.P. (2013) *College Botany, Volume-I*, S. Chand Publishing, New Delhi
- ➤ Hait,G., K.Bhattacharya&A.K.Ghosh (2011) A Text Book of Botany, Volume-I, New Central Book Agency Pvt. Ltd., Kolkata
- ➤ Bhattacharjee, R.N., (2017) *Introduction to Microbiology and Microbial Diversity*, Kalyani Publishers, New Delhi.

Books for Reference:

- Dubey, R.C. &D.K.Maheswari (2013) A Text Book of Microbiology, S.Chand& Company Ltd., New Delhi
- ➤ Pelczar Jr., M.J., E.C.N. Chan &N.R.Krieg (2001) *Microbiology*, Tata McGraw-Hill Co, New Delhi
- ➤ Presscott, L. Harley, J. and Klein, D. (2005) *Microbiology, 6th edition*, Tata McGraw Hill Co. New Delhi.
- Alexopoulos, C.J., C.W.Mims&M.Blackwell (2007) *Introductory Mycology*, Wiley& Sons, Inc., New York
- Mehrotra, R.S. & K. R. Aneja (1990) *An Introduction to Mycology*. New Age International Publishers, New Delhi
- Kevin Kavanagh (2005) Fungi; Biology and Applications John Wiley & Sons, Ltd., West Sussex, England
- ➤ John Webster & R. W. S. Weber (2007) *Introduction to Fungi*, Cambridge University Press, New York
- ➤ Fritsch, F.E. (1945) *The Structure & Reproduction of Algae (Vol. I & Vol. II)* Cambridge University Press Cambridge, U.K..
- ➤ Bold, H.C. & M. J. Wynne (1984) *Introduction to the Algae*, Prentice-Hall Inc., New Jersey
- ➤ Robert Edward Lee (2008) *Phycology*. Cambridge University Press, New York
- ➤ Van Den Hoek, C., D.G.Mann&H.M.Jahns (1996) Algae: An Introduction to Phycology. Cambridge University Press, New York
- ➤ Shaw, A.J.&B.Goffinet (2000) *Bryophyte Biology*. Cambridge University Press, New York.

Practical syllabus ofBotanyCoreCourse – 1/ Semester – I Fundamentals of Microbes and Non-vascular Plants

(Viruses, Bacteria, Fungi, Lichens, Algae and Bryophytes) (Total hours of laboratory exercises 30 Hrs. @ 02 Hrs./Week)

Course Outcomes:Onsuccessful completion of this practical course, student shall be able to:

- 1. Demonstrate the techniques of use of lab equipment, preparing slides and identify the material and draw diagrams exactly as it appears.
- 2. Observe and identify microbes and lower groups of plants on their own.
- 3. Demonstrate the techniques of inoculation, preparation of media etc.
- 4. Identify the material in the permanent slides etc.

Practical Syllabus:

- 1. Knowledge of Microbiology laboratory practices and safety rules.
- 2. Knowledge of different equipment for Microbiology laboratory (Spirit lamp, Inoculation loop, Hot-air oven, Autoclave/Pressure cooker, Laminar air flow chamber and Incubator) and their working principles. (In case of the non-availability of the laboratory equipment the students can be taken to the local college/clinical lab. with required infrastructural facilities or they can enter a linkage with the college/lab for future developments and it will fetch creditsduring the accreditation by NAAC).
- 3. Demonstration of Gram's staining technique for Bacteria.
- 4. Study of Viruses (Corona, Gemini and TMV) using electron micrographs/ models.
- 5. Study of Archaebacteriaand Actinomycetes using permanent slides/ electron micrographs/diagrams.
- 6. Study of *Anabaena* and *Oscillatoria* using permanent/temporary slides.
- 7. Study of different bacteria (Cocci, Bacillus, Vibrio and Spirillum) using permanent or temporary slides/ electron micrographs/ diagrams.
- 8. Study/ microscopic observation of vegetative, sectional/anatomical and reproductive structures of the following using temporary or permanent slides/ specimens/ mounts:
 - a. Fungi: Rhizopus, Penicillium and Puccinia

- b. Lichens: Crustose, foliose and fruiticose
- c. Algae: Volvox, Spirogyra, Chara, Ectocarpus and Polysiphonia
- d. Bryophyta: Marchantia and Funaria
- 9. Study of specimens of Tobacco mosaic disease, Citrus canker and Blast of Rice.

Model Question Paper for Practical Examination

Semester − I/ Botany Core Course − 1

Fundamentals of Microbes and Non-vascular Plants

(Viruses, Bacteria, Fungi, Lichens, Algae and Bryophytes)

Max. Time: 3 Hrs. Max. Marks: 50

- Take the T.S. of material 'A' (Fungi), make a temporary mount and make comments about identification.
- 2. Identify any 2 algae from the mixture (material 'B') given with specific comments about identification.

 10 M
- 3. Take the T.S. of material 'C' (Bryophyta), make a temporary mount and make comments about identification. 10 M
- 4. Identify the following with specific reasons. 4x 3 = 12 M
 - D. A laboratory equipment of Microbiology
 - E. Virus
 - F. Archaebacteria / Ascomycete / Cyanobacteria / Eu-Bacteria
 - G. Lichen
- 5. Record + Viva-voce

5+3 = 8 M

Suggested co-curricular activities for Botany Core Course-1 in Semester-I:

A. Measurable :

a. Student seminars:

- 1. Baltimore classification of Viruses.
- 2. Lytic and lysogenic cycle of T- even Bacteriophages.
- 3. Viral diseases of humans and animals.
- 4. Retroviruses
- 5. Bacterial diseases of humans and animals.
- 6. Significance of Bacteria in Biotechnology and Genetic engineering.
- 7. Fungi responsible for major famines in the world.
- 8. Poisonous mushrooms (Toad stools).
- 9. Algae as Single Cell Proteins (SCPs)
- 10. Parasitic algae

- 11. Origin of Bryophytes through: Algae vsPteridophytes
- 12. Fossil Bryophytes
- 13. Evolution of gametophytes in Bryophyta.
- 14. Ecological and economic importance of Bryophytes.

b. Student Study Projects:

- 1. Isolation and identification of microbes from soil, water and air.
- 2. Collection and identification of algae from fresh /estuarine /marine water.
- 3. Collection and identification of fruiting bodies of Basidiomycetes and Ascomycetes.
- 4. Collection and identification of Lichens from their native localities.
- 5. Collection of diseased plants/parts and identification of symptoms.
- 6. Collection and identification of Bryophytes from their native localities.
- **c. Assignments**: Written assignment at home / during '0' hour at college; preparation of charts with drawings, making models etc., on topics included in syllabus.

B. General:

- 1. Visit to Agriculture and/or Horticulture University/College/Research station to learn about microbial diseases of plants.
- 2. Visit to industries working on microbial, fungal and algal products.
- 3. Group Discussion (GD)/ Quiz/ Just A Minute (JAM) on different modules in syllabus of the course.